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A CONTINUUM MODEL FOR CURVILINEAR
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Abstract—The governing kinematical, dynamical and constitutive equations of an approximate theory for a
curvilinear laminated body are presented. Starting with two-term expansions of the field variables about the
midsurfaces of the discrete layers, it is shown that in the first approximation the deformation of a curvilinear
laminated body is described by three vector fields, termed the gross motion and the local deformations.
Dynamical balance laws are derived for the resultant stresses and moments of stress. A constitutive theory is
formulated for nonlinear elastic materials. A simplified version of linear constitutive equations is discussed and
specific forms of the balance laws and constitutive equations are given for cylindrical and spherical laminated
bodies.

NOTATION

Throughout this paper we use standard vector and tensor notation. Bold face letters indicate vector or tensor
quantities. Upper case italic subscripts assume the values 1, 2, 3 and indicate tensors in the Lagrangian system X*.
They are raised and lowered by the metric tensor Gy, and its inverse GX2. Greek subscripts and superscripts
assume the values 1, 3 and are referred to the X!, X components of the Lagrangian system. Lower case italic
subscripts assume the values 1, 2, 3 and specify tensors in the Eulerian system x’. They are raised and lowered
by the metric tensor g, and its inverse g*. Superscripts and subscripts in parentheses indicate whether a quantity
belongs to a reinforcing layer or a matrix layer; they are not tensor indices.

1. INTRODUCTION

IN A recent series of publications [1-4] an approximate theory for a laminated body,
fabricated by alternating a matrix layer and a fiber-reinforcing layer, has been derived and
analyzed. The theories discussed in Refs. [1-4] have been restricted to plane laminae. In
this paper we generalize the theory of a laminated body to include layering whose geometric
structure is not necessarily planar. We consider a laminated solid formed by the compound-
ing of matrix layers and fiber-reinforcing layers in such a way that the interfaces of the
layers are parallel surfaces. As examples of such bodies we mention laminated cylinders of
arbitrary cross section, laminated spherical shells and laminated domes.

Conceptually, the states of deformation and stress in laminated bodies can be determined
by solving the governing system of balance laws within each layer, and by satisfying various
continuity conditions at the interfaces and certain boundary conditions on the bounding
surfaces. In practice this is impossible to carry out. Fortunately, in many applications one
is not interested in the detailed deformation within each layer but only in certain gross
quantities. In that case the system of discrete layers can be approximated by a homogeneous

1 This work was supported by the Advanced Research Project Agency of the Department of Defense through
the Northwestern University Materials Research Center.
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continuum model. This is accomplished by representing the motion within each layer by a
two-term expansion and by averaging over the thicknesses of the layers. In this continuum
model of a laminated body the kinematics is described by three vector fields: the gross
motion and two local or “micro” motions. By requiring that the motion is continuous at the
interfaces of the layering it is shown that these kinematical variables satisfy a constraint
condition. In Section 2 we present the geometrical and kinematical ideas necessary for the
development of a continuum model of a curvilinear laminated body. In Section 3 we derive
the corresponding balance laws by integrating Cauchy’s balance laws of linear momentum
and moments of these equations and passing to the continuum model. This process is
justifiable if the characteristic length of the deformation is large compared to the thick-
nesses of the layers and if the ratio of the thicknesses of the layers to the minimal principal
radius of curvature of the lamina is small compared to unity.

In Section 4 we formulate a constitutive theory for nonlinear elastic material with a
lamellar structuring.} In Section 5 the equations are linearized for isotropic materials. In
Section 6 we present the constraint conditions, balance laws and linear constitutive equa-
tions for cylindrical laminated bodies and for spherical laminated bodies.

2. GEOMETRY AND DEFORMATION

We consider a system of parallel surfaces and choose a coordinate system X* of the
undeformed body, such that X2 is perpendicular to the family of surfaces. The coordinates
X1, X3 are taken as surface coordinates of one of the surfaces (the surface X2 = 0) whose
unit normal vector is v. In a cartesian system Z the family of surfaces is defined by

Z=2{X", XH+ XX X3 (2.1)
Since v is a normal to the surface X2 = 0, we have
0Z-v=0 a=13. (2.2)

We introduce the base vectors G of the coordinate system X¥ as

G, = 0,L
2.3)
Gz = 6221 =YV.
From (2.1) and (2.2) it follows that the metric tensor Gg; = Gg - G has the form:
Gy =G, Gy = G y—2XB,, +(X*?B2B,,
Gy =Gy =0 24

G22 = 13

where G,,,, is the metric tensor of the surface X2 = 0, and B,; is its second fundamental
form:

o~

6us=6,6G,, 6G,=82, 6,6°=25 (2.5)
Baﬂ = 5,;@0, -V = "'(’;a ’ 5,3\’, gaﬂ = Ba.},G\Yﬂ. (26)

+ The theory formulated here resembles a micromorphic material with internal constraints.
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If we define
G = det(G,
(G) 2.7)
G = det(Gaﬂ),
then it can be shown (see Thomas [5, p. 105]), that
JG = J(GK*, (2.8)
where
2H 232 B
K* = 1-2X*B" +(X?) rel 2.9)
and
B = det B,;. (2.10)

In the sequel we will need the following relations for the Christoffel symbols of the second

kind :
K 2
A AL A A
E 3 K — * ﬁ *
K {K “}c =K {B 0(}ﬁ+(3,,K (2.11)

K
K* = 8,K*.
{K 2}G 2

We consider a laminated composite which before deformation consists of alternating
parallel sheets of a matrix and fiber-reinforcing layers. We choose the curvilinear coordinates
XX such that the coordinates X!, X3 are surface coordinates of a family of parallel surfaces,
discrete members of which coincide with the interfaces of the lamination, and the coordinate
X ?isin the direction of the normal to the lamination. The system X¥ is defined by equations
(2.1)and (2.3). We assume that the thickness of the fiber is d - and the thickness of the matrix
is d,,. We fix our attention on the kth pair of layers and introduce the local coordinates
X%, and X7, at the center of the kth fiber and kth matrix (see Fig. 1).

Within the kth pair of layers we express (2.1) in terms of the relative coordinate system

Ziuy = Lo X', Xy, X+ XWX, X°)

= - (2.12)
Ziniy = Lo X', X iy X)+ X Gpv(X 1, XO),
where Z,;,, and Z,, satisfy
Zgo—Ziy = $d;+d v (2.13)
We define the basic vectors within the kth reinforcing and matrix layers as
Gioa = O0uligiy, Gz =V (2.18)

G(mk)a = aaZ(mk)v G(mk)Z =V,
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x%o0
FiG. 1. Element of the kth pair of layers.

where « = 1, 3, and also the basic vectors at the corresponding midsurfaces

G = 0ulisiys Gz =V

_ _ _ (2.15)
G(mk)u = aazZ(mk)a G(mk)Z =V.
If we define G4y, G
G(fk) = det(G(fk)aﬂ); Girmap = G(fk)a ) G(fk)ﬂ (2.16)
Gy = AU Gmigap) ; Gimiyep = Gomiga* Gomiyg
and G 4, Gy
G iy = 4et(Giap); G ues = Giroa Grap 2.17)
G iy = det(G (rryap) ; G miyap = C(mk)a ‘ G(mk)/h
we obtain from (2.8) that
\/ (G(fk)) = \/ (G(fk))szfk) (2.18)
\/(G(mk)) = \/(G(mk))kamk),
where
% Y2 R ¥ XZ ZB(f")
Ky = 1-2X B’y +(Xipn) 5 —
_(fk) (2.19)
- B,
Ky = 1=2X 5By, +(X (Zm))z(—;—(ﬁ
(mk)
In equations (2.19), we have defined
Biriyag = 04G i Vi Briy = det(Bigiap) (2.20)

B(mk)aﬂ = 6ﬂ(—;(mk)a L B(mk) = det(E(mk)aﬂ)'
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If the characteristic length of the deformation is large compared to the thicknesses of the
layers, then within the kth pair of layers we can approximate the motion by

1 ~ vl 1 2 3 2 1 1 2 3
Xy = XX Xrwys X, 0+ X (W a2 (X7, Xy, X5, 1)
o ol v 3
x:mk) > Eimi X, X(zmk)s X3, 0+ X(zm)ll’(mk)ll(Xl’ X(zmk)’ X°, 1),

where we have referred the motion to an arbitrary coordinate system (x') of the deformed
body. In equations (2.21), X{+, and X, represent the motion of the midsurface of the
reinforcing and matrix layers, respectively ; ¥ ry,,' and ¥ ,,,' give the antisymmetric shear
and symmetric thickness stretch deformations of the fiber and matrix, respectively.

If we change the coordinate system (x') of the deformed body to a coordinate system (')
where the transformation is given by

¥ = W), (2.22)

(2.21)

then in the system (') we can write the approximate motion (2.21) as
.fok) = yifk)(le X(sz), X3, t)+X(2f)(p2(fk)l(X1, X(ka), X3, t)

Vomky = Vimin X3 Xty X2, )+ X200 2mig (X 1y Xy X3,0). (22)
Using (2.21) and (2.22), we obtain
1 Iz V2 =i .
Y = W&o+ Xp¥agn) = KX+ Xz 9200
) _ , . -, Oh' . (224)
Vomky = h Xy + X Gohmty) = B(Xi) + X fm)a}'/’i(mkr

Comparing (2.24) with (2.23), we obtain the following transformations for X{ i), (m,

l//lz(fk) and l/”z(mk)3
o I=j
Yy = WX 1)
SR (2.25)
Yimiy = h (xj(mk))

and
I

y .
‘Plzuk) = 5}7'/”201‘)
(2.26)

¥
e 9
P2(mk) ax ,l// 2(mk)

In the sequel it will be found convenient to use vector notation. We introduce in the
deformed body a cartesian coordinate system (z') which is related to the coordinate system
(x') by

Zh = Zi(xd)
S (227

xi = xJ(2).
We define the position vectors p ) and py,, of the kth reinforcing and matrix layers, re-

spectively, as
| 1 !
= Z{rilp; 2 = Z(x

Py = Zrioh o = 2 (X0 (228)

Y ST o
Pimky = Z(mi)l1 > Z(mky = Z (Xmky)»
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where i, are the unit base vectors of the cartesian system (z'). We can now express (2.21) in
vector notation:

P = Py XY, Xy X2, 0+ XWX Y Xy X3, 1)
p(mk) = r’(mk)(Xl’ X(zmk)1 X3> t)+X(2m)‘|’(mk)2(X15 X(zmk)~ X3, t),

where Py and Py, are the midsurface position vectors after deformation of the kth
reinforcing and matrix layers, respectively :

(2.29)

= . N i
Puw = Zywis  Ziy = 2(Xiw)

= s =l .
Pony = Zeniplrs Ly = 2 (x{mk)L

(2.30)

and Y sy, and Y, are the local displacements of the reinforcing and matrix layers,
respectively:
Virnz = Vw2 By
’f U8 l_(f) 2.31)
Vimiyz = Yimiy2 Somin-

In equations (2.22), 8y and &,y are the base vectors g,(x’) of the coordinate system (x')
evaluated at X/, and X{,,, respectively:

_ . oz" . ..
B = 8lX{n) = a—xf(x{ T,
2.32)

n

" —; 20 i .
By = g!(x‘(’mk)) = é}[ (x{mk)}lw

All the quantities introduced in equations (2.29) or equivalently (2.21) are not in-
dependent. The position vector must be continuous at the interfaces of the laminated
composite. For the kth pair of layers this requires that Pisxy, Bimky> Wirry2 and Y2 satisfy :

P X X, X2 8) =P X Y, Xy, X3, 0)
dy 1 y2 3 d, 1 y2 3
= "j"‘[’(fk)z(X > X{ri» X, f)'*‘*z’\l’(mk)z(X s Xiomiys X5 1), (2.33)

where d, and d,, are the thicknesses before deformation of the reinforcing and matrix
layers, respectively.

We construct a continuum model of a curvilinear laminated medium by following the
same reasoning employed in the case of plane lamination [1-4]. We introduce field variables
which are continuous functions of X ? and whose values on the discrete surfaces X* = X7,
and X2 = X2, are the actual values of the midsurface position vectors and local displace-
ment vectors. This is indicated by writing P(X*, ) instead of P (X", Xy, X3, 1), etc.
Also, the continuity condition (2.24) suggests that P, and py,,, should be represented by the
same vector field p(X¥, 1), termed the gross position vector, at different locations. By noting
that X%, = X}~ 3(d,+4d,), and by assuming that the thicknesses of the layers are small,
the difference relation (2.33) can be replaced by

azp(XK» l) = ’?‘l’(f}z(XK’ t) +(1 - ’?)q,(m)(XKa t)’ (234)
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Formally, the passage from (2.33) to (2.34) is justified by taking the limit d; —» 0,d,, - 0,
such that #, defined by

_ 4
dy+d,’
is held constant. It is assumed that the continuity conditions (2.34) hold at each point of the
continuum. We are thus replacing the discrete system of parallel layers by a continuum
with microstructure.

To write (2.34) in component form we note that the above reasoning is equivalent to
replacing X{,, and X{,, by X, and z{, and z},, by z". The gross position vector p is given by

n (2.35)

p = Zi, (2.36)
where 2/ is related to X' by
7 = Z(x')
) (2.37)
= x{(7).
Introducing the base vectors g,
_ o7,
g = 'a?ln, (238)
we see from (2.36) that
azp == az.-.x_lgl‘ (2.39)

Also, decomposing Yy, and Y,;,
\I’(f)z = ‘l’(f)zlgl

— (2.40)
\ll(m)z = Ym2 &1

we obtain from (2.34) that
9, 54(XX, 1) = 'I‘p(f)zl(XK, +(1 —ﬂ)‘//(m)zl(XK, B). (2.41)

In the continuum model of a curvilinear laminated composite, the kinematic variables
are p,V ), and Y., . These variables are not independent but must satisfy the continuity
condition (2.34) or equivalently in component form (2.41).

It is often convenient to introduce the gross displacement vector U

U(X%, 1) = (X%, t)—P(X5)—b, (2.42)
where P(XX) is the gross position vector before deformation :
P(X%) = Z(x%), (2.43)

and b is the vector from the origin of the cartesian system (Z*) to the origin of the cartesian
systems (z¥). If we introduce the components of U, ¥;),, and Y, in the direction of the
base vectors Gx = Gg(X¥)

U = UG, (2.44)
Vinz = Wi +5)Gg; Yirys' = BkW(r)o" +6%) (2.45)
Yimy2 = ('/’(m)ZK +85)G; l/’(m)zl = glx(‘p(mnx‘f'alz()a (2.46)
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where the shifters g& are defined by

gk =8 Gy (2.47)
and
g8 = on, (2.48)
we can express the constraint condition (2.41) as
U = m® + =", (2.49)
where
UK, = 6LU"+{ K }UM. (2.50)
M L

3. DYNAMICAL BALANCE LAWS

Within each layer the dynamics of the material is fully described by Cauchy’s law.
For the kth pair of reinforcing and matrix layers, this implies that

: l . _
Oftim + {, } i+ Punlin = Py 3.1)
J 8(sx)
J ! J
Ol i+ . oty + Pomifimiy = PimiyBmiy» (3.2)
l j B(mk)

where t/,, and t/.) are the stress vectors acting on the jth coordinate surface of the kth
reinforcing and kth matrix layer, respectively; f ,, and f,, their respective body force
VECLOrS; Pty and pg,,, their respective mass densities in the deformed body; and a,, and
a,, their respective accelerations. If we introduce the Piola stress vectors [6, 7]

K K j . ]
T = w0 X Gotisn Jirny = det(0xx( i)

. ) (3.3)
T(Ifnk) = Jmiy0; X (Ifnk)tfmk)é Vmiy = det(OxX(myy)
and the undeformed densitiest
Pr i (fx) (3.4)
Pm = p(mk)‘](mk)9
we can write the balance laws (3.1) and (3.2) in the form [6, 7]
K L K
xTinty; T+ = P (3.5
Gisie)
OxTK . + L TE o+ Pof iy = P - (3.6)
K*(mk) L K Gose (mk) m*(mk) m*(mk) .

t We assume that p, and p,, are constants, i.c. the layers are homogeneous.
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Introducing the relative coordinate systems at the midsurface of each layer, we can express
(3.5) and (3.6) as

. | B
Ol Kl Tip) + K ffrh)Tum{ 8 afe +05(K T

Grry

+pe K&l = prKdin (3.7)

B
aa(K?:nk)T%mk)) + Kﬁnk)T?mk) {B + EZ(szmletzmk))

o alm!-tl
+ 2K fimiy = PmK @ miy (3.8)
where G, and G, are the metric tensors of the midsurface of the kth fiber and matrix
layers, respectively; K, and Kg,, are defined by (2.19). In deriving (3.7) and (3.8) we

have used the identities (2.11).
To obtain the balance laws of a laminated composite we integrate (3.7) and (3.8)

over the kth pair of layers:

aank) +

. B
int "I(Kffk)T‘{f,‘)){
df + dm ﬁ a Gfi)

1 B
: t(mk) K* o
id, Int"™(KE (mki){ﬁ O‘}Emm

1
+m{[K?fmTfmﬂxz =34, ~ K0Tz, = - 14,

+

(35

Ko Timol52,, = 1am — K T 13, = — 30t + PRy = PGy, (3.9)

{m)

where we have defined

. 1. . | »

Tiy = a+ 1nt‘f“’(K{'f,<,T(fk))+m—mt( UK G i) (3.10)
_ 1. .
Py = d +d 1m(fk)(f’l'quk-)f(fk))+df+d int™p, K& o fiuiy) (3.11)
q . — 1 1 (k) K* . 1 s 4 (mk), * 1
pag, = 4,+d intY*(p, Uk,a‘mk))—}-mmt (0 m K fonicyAmi)» (3.12)
where

p=nprt(1-n)p,. (3.13)

In the above equations we have found it convenient to use the following notation to
indicate integration over the kth reinforcing layer of a function g (X, X4, X&), X3.1):
+dy

int(fk)(g(fk)) = . g(fk)(XlaX(sz),Y(th X0 d)—((zf), (3.14)
dy

and similarly for integration over the kth matrix layer.
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The passage to the continuum model is made by introducing field variables T*( X%, 1),
f(XX, t)and a(XX, ), which at some point X ? within the kth pair of layers assume the values
T, f) and . Also, assuming that

= |-
A

< <1, "< o<, (3.15)

R

where R is the minimum radius of curvature of the midsurfaces, we can write in the first

approximation
Pho o
B )& B e, WBode

where G is the metric tensor at some point X* in the kth pair of layers. Consistent with
(3.15), in the integrals (3.10)~3.12), we can set

K¥y = Kfy > 1. (3.17)

For the interfacial stress vector we introduce a vector function L2(X*,t) which on
the discrete interfaces of the lamination coincides with the interfacial stresses. Using the
continuity of stress at the interfaces we can write the expression in brackets in (3.9) as

df d t[K(mT(fk)]xm T [K(fk)T(fk)]X(f, ~4d;

* 2 1
+ [K(mk)T(mk)]X(m) tdp, [K(mk)T(mk)])‘(%m,: —4dpS

1
d,+d ———{K¥4(3d )3 (X% +dp) + [K(3d,,)
— K —3d)EH (X ) — K —3d, )BA(X 2 —d,)}, (3.18)

which in the first approximation can be replaced by

K
e~ 0222+{ } )2 (3.19)
K 2j¢

where we have used (2.11).
Similarly, from (3.12) and (2.29), to within first order terms, the average acceleration
a(X¥, t) can be written as

a(xX 1) = pp(X*,1). (3.20)

Thus the balance of linear momentum for a curvilinear laminated composite can be
expressed as

) } 2 2{ ' } f b
o, +T* +0,2°+ X + pf = pp. (3.21
{,B oo 2 B2 P op )

The remaining dynamical balance laws for a curvilinear laminated composite may be
derived by multiplying (3.7) by X¢ "y and (3.8) by X ¢, and integrating over the respective
layer thicknesses. For the reinforcing layer we obtain

2 ) B 1. -, O(K¥yTéw)
a M(,k,+M(}k,{ B ofs +71nt‘f"’ Xff)———a‘g_((zf)‘f 2V + o = prody, (3.22)
7 Gk
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where we have defined

1
tho = d; it (XK T (3.23)
1
l(fk) = a—; int fk)(X(f)K(fk)f(fk)) (3.24)
1. —
(!)(ka) s :i; 1ntuk)(X(2f)K?‘ﬁ)a(fk)). (325)

Integration by parts of the integral appearing in (3.22) yields

1. 0y HK%uT0)
_]m(m( Xz (f_k) (Sk)
dy v exy,

where

) = 5{[K(_rk)T(fk)]x(,, 14, LK oL frc)}xm— ~ a5} -T s (3.26)

1.
T = Ef'mtukl(K(frk)T{sz))- (3.27)

In the continuum model of a laminated medium the term in brackets in {3.26) can be
replaced by L3 XX, t); thus (3.26) reduces to

L. oo w2 OKETS
d—fmtff*)(xff,m( ;{%}f :f*’)) -TZ,. (3.28)

where we introduce a field quantity T{*f)(X K t) which at some point X? within the kth
reinforcing layer assumes the value T(,,. Similarly, we replace the quantities M}, |
and @f,,, by vector fields M‘:})(XK 1), B X%, 1) and of,(X¥, 1), respectively. Using (2.29)
and (3.15) in (3.25), in the continuum model @}, has the form

‘D(Zf)(XK, t) = pf‘fj‘-[’(f)z ) {3.29)
wheze
= ald,). (3.30)

Substituting (3.28) and (3.29) in (3.22) we see that, in the continuum model, the balance
of moment of momentum for the reinforcing layer becomes

B =
g M(f)*“M?fz){ 8 a +E2 =T+ = prd Vi (3.31)
G
Similarly, for the matrix, we deduce that

B
0 M(m) + M(m) {ﬁ s + 22 “‘T(zm) + Pml(zf) = pme‘II‘,,,)g . (332)

By using the identity

1 , L
76 (@) = {L K} 39
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and (2.11), equations (3.21), (3.31) and (3.32) can be put in the form

\/(G) A (OTY+— J(  2V(GE) + pf = pb
1
J(G) O (GMER)+ 22 =T+ pdly, = ppl Vi

\/(G)I\'i(m))"‘22 Tz )+pml(m) = Pmlm‘i’(m)l'

\/(G)

(3.34)

(3.35)

(3.36)

If we choose a coordinate system x' of the deformed body with base vectors §,, we can

write (3.34)—(3.36) in component form:

aj«fﬁa'{ g } +T°‘"{ 1} aaff+azz”+z”{ p }
B oe noJg B 2)g

l ; "
+22"{n j}_ 0, % +pft = p¥
g

! , _
aaM%f;+M?f2)'{ d }_ +Mi’f2)"{ }_ 0, X' +Z¥-TY,
B e n je

+orllpy = prd

l . —
ooyl P L oewgl ! omeroy,
B ale no g

+ Pl = P iy’
where
T* = T,
2= 22151
M, = MiAE,
MG = Ming,
TY = Ti&
Ty = Tonls
f=rg
I& = I8

l(m) = limE1-

(3.37)

(3.38)

(3.39)

(3.40)
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Similarly, the balance laws (3.21), (3.31) and (3.32) can be expressed in component

form in the system (X¥):

aaTaK+TaK{ L } +T‘aN{ K } +6222K{ L
L a)g N ajg

K o
} +22N{ } +pr=pUK
L 2fg N 2J¢

(341)
L K — .
X R P SRRl PRl e 1 R O PO )
L o € N o Fal
L K .
R e R o e S VN B Y
L o)g N a)g
where
Ta — TmK(_;K, Tal — glKTaK
22 - ZZKCK, 22! — gl ZZK
M, = M Gy, M) = BkME
Mi;, = Mif Gy, M@= ﬁ)x
Tf) = TG, T =% KTm (3.44)
T(m) = T(m)GK’ T(m) =g KT(zn{()
= f¥G, fr=g\r*
1% = G« I&h = 8%l
1wy = limGi 5y = g'its,

and g' is defined by (2.47).

The system of equations (3.21), (3.31) and (3.32), or the equivalent forms (3.34)—(3.36),
(3.37)—-(3.39) or (3.41)—(3.43), form the basic balance laws in the continuum model for a
curvilinear laminated composite. The boundary conditions corresponding to the balance
laws are

T°N,+X°N, =H

M}N, = H{j, (3.45)
M(M)N H(rn)’
where N is the normal before deformation of the boundary
N = N aGa+N 2G2

and H, H,, HZ,, are specified vector functions on the boundary. See [3] for a discussion of
these boundary conditions.

4. CONSTITUTIVE EQUATIONS FOR ELASTIC CURVILINEAR
LAMINATED COMPOSITES

To the kinematical and dynamical equations of a composite material formulated in
Sections 2 and 3 must be added the constitutive equations relating the stresses and stress-
moments to the deformation. In principle these constitutive equations in the continuum
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model can be derived from equations (3.10), (3.23)and (3.27), when the constitutive relations
of the reinforcing and matrix layers are specified. In this section we present the constitutive
relations for a laminated composite whose layers are elastic. Thus, within the kth pair of
layers the stress-deformation relations are

oF,
T = py &0 L9 Fyn = Fopyu)
( Kp(fk)) @1
0F,, '
TK — F’(mk) = m(aKp(mk))’

mk) — Pmara - o
() 0P miy)

where F; and F,, are the stress potentials of the reinforcing and matrix layers, respectively.f
From equations (2.29) we have that

0Py = OB ipio+ X0l 12

4.2)
a217(fk) = ‘I‘(ﬂc)z
and
OuPimy = Oy + X i@V 102 3)
a2l’(mk) >~ Yimky2- )
We introduce the stress potential Fy, of the kth pair of layers as
- 1 . " —
pFgy = &; ;dlpf mt(f"){Kz‘}k)P}(éapm,—i— XneVirn2s Y2l
1 . _ =
+ df +d Pm mtim”{K("‘mmF m(ami’(mm‘f' X %m)aa‘s"(mk)Z‘ ‘l’(mk)z)]! 4.4)

where we have used (4.2) and (4.3) in (4.1). From (3.10), (3.23), (3.27), (4.1) and (4.4), we
obtain

Ty = a(aa;(:k)) a(ggtk;) 43

M, = %(%5 (4.6)
(1—n)M2, = %3% 4.7
1T = p%%:-; (4.8)

+ We suppress the dependence of the constitutive functions F; and F,, on the matrix tensor Gy, and various
director fields D which define the symmetry properties of the material.
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Following the reasoning of Section 3, to obtain the constitutive relations in the con-
tinuum model of an elastic laminated composite we define F:

pF(aap, aat\l,(f)z ) al‘l’(m)l ’ ‘I’(f)fz 3 ‘l’(m)z)

1 1y _ —
p] f prF 0.8+ X0V )25 Wipy2) dX Ty,
df +dn —4dy
1
d,+d,

+

+dm
J’ N mem(aal—) + X(zm)aa‘l‘(mﬁ ’ \l'(mll) dX(Zm)' (4 10)
—4d,

In the continuum model the constitutive equations (4.5)—(4.9) thus reduce to

- oF
T = pm 4.11)
oF
?"M?fz) = pm (4.12)
oF
1-yM22 = p———— 4.13
~ oF
nTé=p 5_‘|’(f)z 4.14)
oF
(1-nTG, = . (4.15)
(m
In component form equations (4.11}H4.15) become
— oF
Tal = pm (416)
oF
qM ()% = P‘—“—a(‘/lwz:‘ ) 4.17)
, oF
(=M™ = pr—r 4.18
m a(\/"(mlll;a) ( )
— oF
Tk = 1
ntnt P(w(m: (4.19)
_ oF
(A=mTm* = p . 4.20
) 4 al//(m)ll ( )
where we have employed
0.9 = (3.X )&,
BN = Wina' & (4.21)

OV my2 = ('//(m)zl;a)gt-
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In (4.21), we have introduced the total covariant derivative

l _;
Yintha = 0 + {j n} V()2"0a%

| (4.22)
‘//(m)zl;a = aaw(m)21+ {J n} Y my2"0, %
From (2.42) we can show that
&y = F165+ Uly). (4.23)
Using (3.44), (4.16)(4.20) and (4.23), we obtain
_ oF
TuK = por——uase 4.24
pa( UK;a) ( )
= oF
Y (7 Sy e — 4.25
I T (423)
oF
A-mMZ =p— (4.26)
m a(!/’(m)ZK:az)
oF
nTs =p @.27)
o Y125
oF
1-TRK =p—— 4.28
(1-mn) m) pa(‘//(m)zx) ( )
where
M
UK;u = aaUK— {K a} UM
M
l/’(f)zx;a = aaz‘/’(f)zx_ K « G‘//(f)ZM (4-29)

M
lp(m)lK;a = aml/l(m)ZK - {K a}c l‘[/(f)?-M :

5. LINEAR THEORY OF AN ISOTROPIC CURVILINEAR
LAMINATED COMPOSITE

For most applications the infinitesimal theory of elasticity is quite adequate and con-
siderably simpler than the finite theory. In this section we present the infinitesimal theory of
an isotropic curvilinear composite. If the strains and rotations are small, then the strain
energies of the kth reinforcing and matrix layers can be approximated by

Ao~ ~ -
Py = jf(Etfk)Kx)z + e E o LE 1"k
(5.1)

A = ~ -~
[ Tm(E(mk)KK)2+ﬂmE(mk)KLE(mk)LKs
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where E 4, and E,x, are the infinitesimal strain tensor of the kth reinforcing and matrix
layers, respectively :

Fnd 1 k k
Ernr = 3( ULR+UdR)

_ (5.2)
Eiokr = HU fr??‘*‘ uemd).

From (2.29) we see that
E iy = HULP+ U +3X50 005 + V)
Epnap = Eqpipr = HUYE + V0 +3X 11226 (5.3)
E(fk)ZZ = ‘/’( 225
and similarly for E(,,,k)x - Substituting (5.1} and (5.3} into (4.4), and passing to the continuum
model, (4.10) for an infinitesimal isotropic laminated composite becomes:
PF (Ux;a JJ’( F12K;a l[’(m)ZK;m’ ‘f’( £12K> ‘/’(m)zx)
= JAE" ) + ﬂEaﬁEﬁa +4 anaa‘//( 22+ An(l— ”I)Eaa‘ﬁ(m)zz

Ar+2 (A + 20)(1 = G0, U
i__i_#ﬁﬁ%m)z __,__%u%m)u%uc dpmpe

- - B
+ uGPUn i py2p+ b1 =GP Uy W imyzp + ”’i"/’mza‘f’(f)az

#m(l o ??)» J (1= mAnd
'—“‘Iy(m)ZaW(m)Z +— Rl ket (E(f) Zm)z 2
+ fE(f)aZﬁE(f)ﬁza+( L=t E(m)EZﬁE(m)ﬁZa
Nited £ 7, (1- n)um ma
+ “é_{G Vinzalinze+——"5 0 Wm2za¥m22:> (5-4)
where we have defined
Eaﬁ = %(Ua:;ﬂ"{' Uﬁ;c@) (55}
E(ryaap = 3W(py2ap+¥in128:0) (5.6)
Emyazp = W im2asp + Vimp2p:a) (5.7)

and
#o= pgh+ p(1—n).

Using (5.4) in (4.24)-(4.28) we obtain the following constitutive equations for an isotropic
elastic curvilinear laminated composite:

T;ﬁ = [AEY}' -+ 2‘_,f"}"lﬁ(j’)22 + A’m(l - q)‘i{;(mjzzjéaﬂ + 2"‘Ea5 (59)
Ty = pUs 4wV py2p+ il =W imy2p (5.10)
M%), = Jf[/le(f”wGw-i-2;1;E(f)a23] (5.11)

(5.8)
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M%) = J 22 (5.12)
T = ufUsp+¥5120) {(5.13)
TY) = /11E7y+(if+2llf)'p(f)22 (5.14)

My = J ol mE™ 3,G g+ 21mE 53] (5.15)

My = J bV 1220 (5.16)
TS = 1T 25+ Wimp2s) (5.17)
T = 2B+ (A + 20 (my22- (5.18)

6. CYLINDRICAL AND SPHERICAL LAMINATED BODIES

The balance laws and constitutive equations presented in the previous sections have
been written in tensor notation. In the application of these equations to a laminated com-
posite with a specific geometry it is necessary to express the constraint condition {4.29),
the balance laws (4.26)(4.28) and the constitutive equations (5.9)(5.18) in terms of the
physical components of the tensors. In this section we carry this out for cylindrical and
spherical laminated composites.

(a) Cylindrical laminated bodies¥
We choose X! = z, X? = rand X3 = 6. Thus the metric tensor and its inverse are given
by

1 0
1 0 0O 01 0
[Ged= 1010 (GX) = : 6.1)
, o0 L
0 0 r )

and the nonvanishing Christoffel symbols are

3 3 1 2
{2 3}6 = {3 z}a - {3 3}§= - 6.2)

We introduce the physical components U, V), Wam, T5 B2, M), ME2 T, Tt

z

({01, 02, 0% = (U U%‘-) 63)

TII le T13‘ T;z T;r
= (6.4)
L. Tor To
roor

T
r

TS 1 T32 TS 3

+ A direct calculation of these equations has been given by Chou and Achenbach{8].
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Ly
(221,2223223) = Erzazrr’—r
1 2 3 'ﬁ
(‘//(f)z s l/’(J’)Z > l//(f)z )= ‘//(zfz), ‘/fgfr),
)
M121 M 22 M123 M(f) M(f) MzZG
f) (€3] ) z2zs ¥ z2rs -

M. My, My

r > or P

T
(T?» Tehrs (f))_(T(i[zv AR r)

321 322 323
M(f) M(f) M(f)

etc.
We can write (4.29), (4.26)+4.28) and (5.9)(5.18) as

Constraint conditions.
8,0, = ) +(1— s
a, U = i+ (1 — Wy
0,U, = n¥f) + (1 —ns?.
Balance of linear momentum.
1 1. = =~ 1 =
arzrr"l_;zrr_" ;507}r+az7-'zr_;‘ne+l)ﬂ = pU

1 1~ .
azr()_|_ 26"',,5072)0"'6: 20+;Tlﬂr+pj‘6 = pUB

0.5 1t 0y Tyt 0, Tt o, = U,

Moment of momentum.
1 1 - .
LM, +0. M~ M4, TG + 91 = o034

1 1 _ )
;59M§f2)9+9 M(20+ngf2)r+zr6_T(2fﬂ)+pfl(2[0) = PfJf‘]’(iro)

- aoMéfz +a Mz2z+zrz_T(2{r)+pfl(213 = pf‘]f'p({z]
and

1 m m 1 m g2l m
;aoM(OZ)r + azM(ZZ)r _;MSZ)H + Err - T(M)+ pml(lr) = Pm mx/’(m)

1 m 1 m m m m
;aaMgz)e*'a M+~ MgZ)r—*_Erﬂ TSR+ pulS® = pod 5%

1 m F(m
T MGD + 0 MY + Z — TS+ pul? = el P52
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(6.5)

(6.6)

(6.7)

(6.3)

(6.9)

(6.10)

(6.11)

(6.12)
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Constitutive equations.
Gross stress tensor

p— —_ Fr 1 I7
Too = 40,0, 4 Apntf) + A =2+ “2")( SUe+20 )
_ 1.~ 1_

To = A ~0U+ U, | + A+ (1 =52 +(A+ 290U,

— — 1. —
’I;)z = 1,9 = #(;69U2+6zU0)

U
T, = u( U, ——1’) + U3 + pn(1 — Sy

T, = uo,U,+ un) + p,(1 — .
Moment of stress

1
M), = Jy [ifa Y+ (A + 2ﬂf)( oY +;¢ fr)):|
1 1
M = 3y o+ )+ ot |

1
~ g o+ o048
l/,(f ))

1
i = sy Lo -2

M;Q,- = Jf”fazl//(Zfr)

Stress average
) 1, _Us )
TY) = My ;aaUr—T'H//zo
T(ﬁQ = #f(azUr+‘p(2‘Q)
1_
TV = 1,( 66U6+ U,+é U)+().,+2y,)|//

(b) Spherical laminated bodies

(6.13)

(6.14)

(6.15)

We choose X! = ¢, X2 = r, X3 = 0, where r is the length of the radius vector, 8 is the
angle between the radius vector and the z-axis and ¢ is the angle between the projection
in the XY plane of the radius vector and the X-axis. Thus the metric tensor and its inverse

are given by

1 0
r’sin’8 0 0 r’sin? 0
Gal=| 0 1 0 Gk =| o 1

0

2
0 0 r 0 Olz
,

(6.16)
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and the nonvanishing Christoffel symbols are

{3} = —sinfcos 6, {1} ={1} =
1 1fg 2 1fs U 2fe

r
1 1 2
= = to, = —r,
{3 1}(—; {1 3}5 co {3 3}5 r
2 " 3 3 1
{1 1}5_ —rsin®, {3 2}(-;_ {2 3}5 -
We introduce the physical components of U, ,,, etc., as
(Ul UZ U3) —_ U‘P 17 E
> rsinf’ " r
— — _ T T T
Tll T12 T13 L) or @0
r?sin?0 rsinf r’sind
ot s el LT T, T,
T3t T32 7T33 be —or i
r’sin @ r r?
(221 222 223) — E"? Y E
T rsing’ oo
)
1 2 3y — !P () lﬁ
(‘/’(f)z s l//(f)z s ‘/’(f)z ) rsm0 VY, )
M(f) M(f) M(f)
M2l pf122 M123 929 o2r 928
n v n r?sin?0 rsinf r*sind
MY MY MY
M321 pg322 M323 62¢ 62r 026
(6] (F2] r2sin 0 r r2
_ TY) T4
et T T3 T = \Tame T )
Using (6.16)-(6.23) in (4.29), (4.26)—(4.28) and (5.9)—(5.18), we have
Constraint conditions.
0,U, = M)+ (1 —np'y
0 Ua = Y +( l—n)w"”’
Balance of linear momentum.
arzrr+%zrr+%al)7—;}r 06¢T¢r+%(00t HTor— Tee“ anp)+ pf; = pﬁr

O o+ 2T ot 10Tt
2

9

62,¢+;2,¢+;60’T,,¢ ——30,T +%(T¢,+cot 0T, +cot 8T,,) + pf, = pﬁ¢.

0¢P¢¢

—0,T, 9+%(T},,+cot 0Ty —cot 0T, )+ pfy = pU,
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(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)
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Moment of momentum.

1 1 1 — .
7 M, + maq,prfz)r + ;(COt OMY,), — My, — Mf{z)q:) +2,-TY+ orls) = pJ Y

1 —
LOuMy 0 MY+ (M + ot OMY,—cot OMU,) +5,0— T4 + 4]

= ol 629
1 1 _

—60M 92¢+ mawM;fz)a, ‘—;(Mg,fz)r +cot OMgz)g +cot HM%)@) + er - T(zj;p) + pfl(if(z

= p I Y
and
1 1
; 6 Mgg)r—‘_—‘e_a MSpMZ)r (COt QM((‘)’;)r g)g)ﬂ—'MiamZ)q)) Z - T(m)+pml("l) = pm‘lm (2’:)
—69M929+ 66 M, (M},';H-cot OM3h —cot OMSD )+ Z,— TSR + p,I5%

1 1

- aoMm, + m%Mﬁ;’;’w + ;(Mg';’, +cot MY, +cot MR )+ X, — TS0 + p, IS0

— PmJ (m)

Constitutive relations.
Gross stress tensor
_ 1 U, cot 0 1. U,
Too = ,1( i 96 U,+— +U9 )+/1,mp‘2f,’+,1,,,(1—n)np‘z":)+(/l+2u) ;00U0+7)
_ 1. U 1 _ U, _ coth
T,, = A|=0eUp+—) +Amf) + A,(1 —n)¢/<m>+(,1+2u) ——3,U,+—+U,
r r sin 0 r r
_ _ 1. .. U,cotl 1 _
Too = Too = ”(?‘39U¢_‘¢—r_+rsin9 “’U”)
U (6.28)

1
rsin 8

_ 1. O,
n,zu(;égU, )+ufmﬁ i+ (1 =158

U
9,U, —7"’) + W)+ p(1— .
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Moment of stress

)
My = Jf{'lf O¥Ys+ 'Ilzr +yY o)COt 0) +(lf+2/‘f)( OWYs + Ve )}

rsinf ?
¢

M = Jf{}'f( Ol//(f) ) (lf+2ﬂf)( =0 ¢l/13f’+l//2’ +|//(2fe)co: 0)}

1 YY) cot 0 1
Mg = M = s Loyt (629)
%
M02r = Jfﬂf 50'/’(f)__r‘
1 vy
) — )y _ Y201,
Moz = Jf'uf(r sin 06""//2' r
Stress average
i) 1 (
T = 1273 ;aa r 2f9
TS ! o.U Uy o0
T =1 rsin 0 "U'—_r_sz“’ (6.30)

ou, -
06¢U +T'+ U, cot 0) + (A + 2u WY,

and similarly for the matrix.

7. CONCLUDING REMARKS

We have presented, in the form of a continuum model, the kinematics, dynamics and
constitutive equations of a curvilinear laminated material. The kinematics and dynamical
balance laws have been derived in such a way that they are independent of the material
composition of the layers. Though we have presented the constitutive theory for elastic
materials, the treatment for more general classes of materials follows readily. In particular,
for linear viscoelastic materials one need only replace the constants in equations (5.9)-
(5.18) by their corresponding convolution integrals (cf. [3]). The inclusion of thermo-
dynamical effects requires an analysis of the temperature and the energy equation similar
to the one presented in [3]. We leave these generalizations to future work.

One can, of course, question the validity of a two term expansion in describing the
behavior of a curvilinear laminated body. Ultimately the proof of such an approach rests
with a comparison of the results of the approximate theory presented here with either
exact solutions and/or experimental investigations. However, it is expected that if the
ratio of the thickness of the layering to the radius of curvature of the layering is small,
the approximated theory presented here should be as adequate as the approximate theories
of plane laminates presented in Refs. [1-4].
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AbcTpakT—/{al0TCA  KMHEMATHYECKHE, NWHAMMYECKUE M KOHCTHTYTMBHBIE YPaBHEHMst NpPHOIMKEHHOM
TEOPHM [JIt KPHBOJ/IMHEHHOTO CJIOXHOTO MaTepuana. HaunHas QByMs 4JieHaMM Pa3/ioKeHHA NEPEMEHHBIX
MOJIA BOKPYT CEPEAHHHBIX TOBEPXHOCTEH AHCKPETHBIX CNOEB, NOKa3aHO, 4TO0 Aedopmaums KpHBOJIHHEH-
HOTO CJIOMCTOIO MaTepuasa B NePBOM MPHOIHKEHHH OMUCAHA IOAAMH TPEX BEKTOPOB, YYHTbIBAIOIUMMM
MOJIHOE OBHXXKEHHE M JioKanbHble nedhopmauuy. ONpPeAenstoTCs 3aKOH OMHAMHYECKOrO DaBHOBECHS M3
CYMMAapHBIX HaNpsyKEHUH ¥ MOMEHTOB Hampsxenui. [aiorcs GopMynsl KOHCTMTYTHBHOH TEOpHM [UiS
HeJIMHEMHBIX YOpYrux Matepuasnos. OOcCyxaaercs YNPOILEHHBIH BapUAHT JIMHEHHbIX KOHCTUTYTHBHBIX
ypaBuennii., [arorca cneuubuyeckue GopMbl 3aKOHOB PaBHOBECHS H KOHCTHTYTHBHBIX YPaBHEHWH 11
UMIMHAPHYECKHX ¥ CHePHUECKNX CIIOMCTBIX TEN.



